Get notified!

Automatically receive blogupdates from our FEA Experts about Abaqus and FEA

Simuleon FEA Blog

Modelling a crack using Abaqus

Posted by Christine Obbink-Huizer on Feb 28, 2017 9:45:00 AM

In many cases it is important to know whether a crack will propagate. Simulating this requires special techniques, especially for sharp cracks. In a perfectly sharp crack, loading is applied to a single point, causing a singularity with an infinitely large stress. In a simulation it is not possible to obtain an infinitely large stress. The loading will be localised in a single element and therefore the results will depend strongly on the mesh, which is unwanted. In the real world, perfectly sharp cracks do not exist; a crack will always have a finite thickness. Because this thickness is very small, it is difficult to measure and take into account numerically. Because the stress at a crack depends strongly on the mesh/thickness of the crack, looking at stress to determine whether a crack will propagate does not work well. Instead, other measures are used. One of these is the stress intensity factor (K), which describes how quickly the stress increases towards the crack, assuming a linear elastic material. Another is the J-integral, which describes how much strain energy is released per unit fracture surface area. Abaqus can calculate such outcomes for a crack, which can then be compared to critical values to determine whether or not a crack will propagate. In this blog I will explain how to set up a simulation to determine the stress intensity factor or J-integral.

Read More

Topics: Abaqus Crack Modelling

About our FEA Blog:

Simuleon blog topics related to Finite Element Analysis like; Structural Analysis and CFD analysis performed with SIMULIA Abaqus FEA, XFlow CFD, Isight Simulation Automation, Tosca Topology Optimization and Fe-Safe accurate Fatigue.

Subscribe to our Blog.

Search All Blogs

      Posts by Tag

      See all

      Recent Posts

      Most Popular Posts

      Read All Blogs

      View All